Seguir
Masaaki Imaizumi
Masaaki Imaizumi
Otros nombres今泉允聡
The University of Tokyo / RIKEN AIP
Dirección de correo verificada de g.ecc.u-tokyo.ac.jp - Página principal
Título
Citado por
Citado por
Año
Deep neural networks learn non-smooth functions effectively
M Imaizumi, K Fukumizu
Artificial Intelligence and Statistics, 869-878, 2019
1692019
Adaptive Approximation and Generalization of Deep Neural Network with Intrinsic Dimensionality.
R Nakada, M Imaizumi
Journal of Machine Learning Research 21 (174), 1-38, 2020
167*2020
Finite sample analysis of minimax offline reinforcement learning: Completeness, fast rates and first-order efficiency
M Uehara, M Imaizumi, N Jiang, N Kallus, W Sun, T Xie
arXiv preprint arXiv:2102.02981, 2021
622021
PCA-based estimation for functional linear regression with functional responses
M Imaizumi, K Kato
Journal of Multivariate Analysis 163, 15-36, 2018
452018
Improved generalization bounds of group invariant/equivariant deep networks via quotient feature spaces
A Sannai, M Imaizumi, M Kawano
Uncertainty in artificial intelligence, 771-780, 2021
442021
On tensor train rank minimization: Statistical efficiency and scalable algorithm
M Imaizumi, T Maehara, K Hayashi
Advances in Neural Information Processing Systems 30, 2017
402017
Instrumental variable regression via kernel maximum moment loss
R Zhang, M Imaizumi, B Schölkopf, K Muandet
Journal of Causal Inference 11 (1), 20220073, 2023
36*2023
Advantage of deep neural networks for estimating functions with singularity on hypersurfaces
M Imaizumi, K Fukumizu
Journal of Machine Learning Research 23 (1), 4772-4825, 2022
31*2022
Doubly decomposing nonparametric tensor regression
M Imaizumi, K Hayashi
International conference on machine learning, 727-736, 2016
312016
Tensor decomposition with smoothness
M Imaizumi, K Hayashi
International conference on machine learning, 1597-1606, 2017
222017
On random subsampling of Gaussian process regression: A graphon-based analysis
K Hayashi, M Imaizumi, Y Yoshida
Artificial Intelligence and Statistics, 2055-2065, 2020
182020
A simple method to construct confidence bands in functional linear regression
M Imaizumi, K Kato
Statistica Sinica 29 (4), 2055-2081, 2019
152019
Hypothesis test and confidence analysis with wasserstein distance on general dimension
M Imaizumi, H Ota, T Hamaguchi
Neural Computation 34 (6), 1448-1487, 2022
122022
Inference for projection-based wasserstein distances on finite spaces
R Okano, M Imaizumi
Statistica Sinica, 2022
82022
Learning causal models from conditional moment restrictions by importance weighting
M Kato, M Imaizumi, K McAlinn, H Kakehi, S Yasui
International Conference on Learning Representation, 2021
82021
On generalization bounds for deep networks based on loss surface implicit regularization
M Imaizumi, J Schmidt-Hieber
IEEE Transactions on Information Theory 69 (2), 1203-1223, 2022
62022
Benign overfitting in time series linear model with over-parameterization
S Nakakita, M Imaizumi
arXiv preprint arXiv:2204.08369, 2022
62022
Exponential escape efficiency of SGD from sharp minima in non-stationary regime
H Ibayashi, M Imaizumi
arXiv preprint arXiv:2111.04004, 2021
62021
Statistically efficient estimation for non-smooth probability densities
M Imaizumi, T Maehara, Y Yoshida
Artificial Intelligence and Statistics, 978-987, 2018
62018
SAN: Inducing metrizability of GAN with discriminative normalized linear layer
Y Takida, M Imaizumi, T Shibuya, CH Lai, T Uesaka, N Murata, Y Mitsufuji
arXiv preprint arXiv:2301.12811, 2023
52023
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20