Seguir
Salar Rahili
Salar Rahili
Postdoctoral Researcher, California Institute of Technology (Caltech)
Dirección de correo verificada de caltech.edu - Página principal
Título
Citado por
Citado por
Año
Distributed continuous-time convex optimization with time-varying cost functions
S Rahili, W Ren
IEEE Transactions on Automatic Control 62 (4), 1590-1605, 2017
2792017
Distributed average tracking of physical second-order agents with heterogeneous unknown nonlinear dynamics without constraint on input signals
S Ghapani, S Rahili, W Ren
IEEE Transactions on Automatic Control 64 (3), 1178-1184, 2018
632018
Distributed coverage control of mobile sensor networks in unknown environment using game theory: Algorithms and experiments
S Rahili, J Lu, W Ren, UM Al-Saggaf
IEEE Transactions on Mobile Computing 17 (6), 1303-1313, 2017
402017
Nonlinear control of autonomous flying cars with wings and distributed electric propulsion
X Shi, K Kim, S Rahili, SJ Chung
2018 IEEE Conference on Decision and Control (CDC), 5326-5333, 2018
342018
Improvement in glucose regulation using a digital tracker and continuous glucose monitoring in healthy adults and those with type 2 diabetes
A Dehghani Zahedani, S Shariat Torbaghan, S Rahili, K Karlin, D Scilley, ...
Diabetes Therapy 12 (7), 1871-1886, 2021
312021
Distributed Convex Optimization for Continuous-Time Dynamics with Time-Varying Cost Function
S Rahili, W Ren
arXiv preprint arXiv:1507.04878, 2015
302015
Distributed convex optimization of time-varying cost functions for double-integrator systems using nonsmooth algorithms
S Rahili, W Ren, P Lin
2015 American Control Conference (ACC), 68-73, 2015
302015
Distributed average tracking for second-order agents with nonlinear dynamics
S Ghapani, S Rahili, W Ren
2016 American Control Conference (ACC), 4636-4641, 2016
272016
Game theory control solution for sensor coverage problem in unknown environment
S Rahili, W Ren
53rd IEEE Conference on Decision and Control, 1173-1178, 2014
232014
Controllability and design of unmanned multirotor aircraft robust to rotor failure
K Kim, S Rahili, X Shi, SJ Chung, M Gharib
AIAA Scitech 2019 Forum, 1787, 2019
212019
Optimal routing for autonomous taxis using distributed reinforcement learning
S Rahili, B Riviere, S Olivier, SJ Chung
2018 IEEE International Conference on Data Mining Workshops (ICDMW), 556-563, 2018
212018
Heterogeneous distributed average tracking using nonsmooth algorithms
S Rahili, W Ren
2017 American Control Conference (ACC), 691-696, 2017
19*2017
Systems, methods, and devices for biophysical modeling and response prediction
PB Dalal, S Rahili, SS Torbaghan, M Yazdani
US Patent 11,664,108, 2023
182023
Distributed convex optimization of time-varying cost functions with swarm tracking behavior for continuous-time dynamics
S Rahili, W Ren, S Ghapani
2015 54th IEEE Conference on Decision and Control (CDC), 362-367, 2015
142015
Autonomous flying ambulance
X Shi, M Veismann, CJ Dougherty, S Rider, SJ Chung, M Gharib, K Kim, ...
US Patent 11,072,421, 2021
132021
Intelligent selection of calibration points using a modified progressive polynomial method
S Rahili, J Ghaisari, A Golfar
IEEE Transactions on Instrumentation and Measurement 61 (9), 2519-2523, 2012
132012
Heart rate and CGM feature representation diabetes detection from heart rate: learning joint features of heart rate and continuous glucose monitors yields better representations
H Rashtian, SS Torbaghan, S Rahili, M Snyder, N Aghaeepour
IEEE Access 9, 83234-83240, 2021
112021
Distributed optimization in multi-agent systems: game theory based sensor coverage and continuous-time convex optimization
S Rahili
University of California, Riverside, 2016
42016
Systems, methods and devices for monitoring, evaluating and presenting health related information, including recommendations
J Shima, S Rahili, SS Torbaghan, M Yazdani, N Hashemi, N Aghaeepour
US Patent App. 17/478,571, 2022
32022
Distributed adaptive reinforcement learning: A method for optimal routing
S Rahili, B Riviere, SJ Chung
arXiv preprint arXiv:2005.01976, 2020
32020
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20