Seguir
Chongli Qin
Chongli Qin
Research Scientist, DeepMind
Dirección de correo verificada de google.com
Título
Citado por
Citado por
Año
Improved protein structure prediction using potentials from deep learning
AW Senior, R Evans, J Jumper, J Kirkpatrick, L Sifre, T Green, C Qin, ...
Nature 577 (7792), 706-710, 2020
35912020
On the effectiveness of interval bound propagation for training verifiably robust models
S Gowal, K Dvijotham, R Stanforth, R Bunel, C Qin, J Uesato, ...
arXiv preprint arXiv:1810.12715, 2018
5692018
Uncovering the limits of adversarial training against norm-bounded adversarial examples
S Gowal, C Qin, J Uesato, T Mann, P Kohli
arXiv preprint arXiv:2010.03593, 2020
3712020
Protein structure prediction using multiple deep neural networks in the 13th Critical Assessment of Protein Structure Prediction (CASP13)
AW Senior, R Evans, J Jumper, J Kirkpatrick, L Sifre, T Green, C Qin, ...
Proteins: structure, function, and bioinformatics 87 (12), 1141-1148, 2019
3592019
Adversarial robustness through local linearization
C Qin, J Martens, S Gowal, D Krishnan, K Dvijotham, A Fawzi, S De, ...
Advances in neural information processing systems 32, 2019
3552019
Scalable verified training for provably robust image classification
S Gowal, KD Dvijotham, R Stanforth, R Bunel, C Qin, J Uesato, ...
Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2019
2052019
De novo structure prediction with deeplearning based scoring
R Evans, J Jumper, J Kirkpatrick, L Sifre, T Green, C Qin, A Zidek, ...
Annu Rev Biochem 77 (363-382), 6, 2018
1552018
An alternative surrogate loss for pgd-based adversarial testing
S Gowal, J Uesato, C Qin, PS Huang, T Mann, P Kohli
arXiv preprint arXiv:1910.09338, 2019
902019
Power law tails in phylogenetic systems
C Qin, LJ Colwell
Proceedings of the National Academy of Sciences 115 (4), 690-695, 2018
742018
Achieving robustness in the wild via adversarial mixing with disentangled representations
S Gowal, C Qin, PS Huang, T Cemgil, K Dvijotham, T Mann, P Kohli
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2020
652020
A framework for robustness certification of smoothed classifiers using f-divergences
KD Dvijotham, J Hayes, B Balle, Z Kolter, C Qin, A Gyorgy, K Xiao, ...
International Conference on Learning Representations, 2020
622020
Verification of non-linear specifications for neural networks
C Qin, B O'Donoghue, R Bunel, R Stanforth, S Gowal, J Uesato, ...
arXiv preprint arXiv:1902.09592, 2019
502019
Training generative adversarial networks by solving ordinary differential equations
C Qin, Y Wu, JT Springenberg, A Brock, J Donahue, T Lillicrap, P Kohli
Advances in Neural Information Processing Systems 33, 5599-5609, 2020
412020
Efficient neural network verification with exactness characterization
KD Dvijotham, R Stanforth, S Gowal, C Qin, S De, P Kohli
Uncertainty in artificial intelligence, 497-507, 2020
342020
Augustin ˇZıdek, Alexander WR Nelson, Alex Bridgland, Hugo Penedones, Stig Petersen, Karen Simonyan, Steve Crossan, Pushmeet Kohli, David T. Jones, David Silver, Koray …
AW Senior, R Evans, J Jumper, J Kirkpatrick, L Sifre, T Green, C Qin
Nature 577 (7792), 706-710, 2020
232020
On a continuous time model of gradient descent dynamics and instability in deep learning
M Rosca, Y Wu, C Qin, B Dherin
arXiv preprint arXiv:2302.01952, 2023
122023
On the effectiveness of interval bound propagation for training verifiably robust models (2018)
S Gowal, K Dvijotham, R Stanforth, R Bunel, C Qin, J Uesato, ...
arXiv preprint arXiv:1810.12715, 2018
112018
Machine learning for determining protein structures
AW Senior, J Kirkpatrick, L Sifre, RA Evans, H Penedones, C Qin, R Sun, ...
US Patent App. 17/266,724, 2021
102021
Training more secure neural networks by using local linearity regularization
C Qin, SA Gowal, S De, R Stanforth, J Martens, K Dvijotham, D Krishnan, ...
US Patent 11,526,755, 2022
52022
Training more secure neural networks by using local linearity regularization
C Qin, SA Gowal, S De, R Stanforth, J Martens, K Dvijotham, D Krishnan, ...
US Patent 11,775,830, 2023
12023
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20