Seguir
Hiroyasu Tsukamoto
Hiroyasu Tsukamoto
Assistant Professor of Aerospace, University of Illinois at Urbana-Champaign/NASA JPL
Dirección de correo verificada de caltech.edu - Página principal
Título
Citado por
Citado por
Año
Contraction theory for nonlinear stability analysis and learning-based control: A tutorial overview
H Tsukamoto, SJ Chung, JJE Slotine
Annual Reviews in Control 52, 135-169, 2021
1242021
Neural Contraction Metrics for Robust Estimation and Control: A Convex Optimization Approach
H Tsukamoto, SJ Chung
IEEE Control Systems Letters (L-CSS) 5 (1), pp. 211-216, 2021
682021
Robust Controller Design for Stochastic Nonlinear Systems via Convex Optimization
H Tsukamoto, SJ Chung
IEEE Transactions on Automatic Control (Early Access), 2020
532020
Neural Stochastic Contraction Metrics for Learning-based Control and Estimation
H Tsukamoto, SJ Chung, JJE Slotine
IEEE Control Systems Letters (L-CSS), Preprint Version, 2020
462020
Learning-based robust motion planning with guaranteed stability: A contraction theory approach
H Tsukamoto, SJ Chung
IEEE Robotics and Automation Letters 6 (4), 6164-6171, 2021
322021
Learning-based adaptive control using contraction theory
H Tsukamoto, SJ Chung, JJ Slotine
2021 60th IEEE conference on decision and control (CDC), 2533-2538, 2021
192021
Convex Optimization-based Controller Design for Stochastic Nonlinear Systems using Contraction Analysis
H Tsukamoto, SJ Chung
58th IEEE Conference on Decision and Control (CDC), pp. 8196–8203, 2019
152019
Safe motion planning with tubes and contraction metrics
S Singh, H Tsukamoto, BT Lopez, SJ Chung, JJ Slotine
2021 60th IEEE Conference on Decision and Control (CDC), 2943-2948, 2021
142021
Learning-based adaptive control via contraction theory
H Tsukamoto, SJ Chung, JJ Slotine
IEEE CDC, 2021
122021
A theoretical overview of neural contraction metrics for learning-based control with guaranteed stability
H Tsukamoto, SJ Chung, JJ Slotine, C Fan
2021 60th IEEE Conference on Decision and Control (CDC), 2949-2954, 2021
82021
Interstellar object accessibility and mission design
BPS Donitz, D Mages, H Tsukamoto, P Dixon, D Landau, SJ Chung, ...
2023 IEEE Aerospace Conference, 1-9, 2023
52023
Neural-rendezvous: Learning-based robust guidance and control to encounter interstellar objects
H Tsukamoto, SJ Chung, B Donitz, M Ingham, D Mages, YK Nakka
arXiv preprint arXiv:2208.04883, 2022
32022
Imitation learning for robust and safe online motion planning: A contraction theory approach
H Tsukamoto, SJ Chung
Submitted to IEEE Robot. Automat. Lett, 2021
22021
Robust Optimal Network Topology Switching for Zero Dynamics Attacks
H Tsukamoto, JD Ibrahim, J Hajar, J Ragan, SJ Chung, FY Hadaegh
arXiv preprint arXiv:2407.18440, 2024
12024
Regret-Optimal Defense Against Stealthy Adversaries: A System Level Approach
H Tsukamoto, J Hajar, SJ Chung, FY Hadaegh
arXiv preprint arXiv:2407.18448, 2024
12024
CaRT: Certified Safety and Robust Tracking in Learning-Based Motion Planning for Multi-Agent Systems
H Tsukamoto, B Rivière, C Choi, A Rahmani, SJ Chung
2023 62nd IEEE Conference on Decision and Control (CDC), 2910-2917, 2023
12023
CART: Collision avoidance and robust tracking augmentation in learning-based motion planning for multi-agent systems
H Tsukamoto, B Rivière, C Choi, A Rahmani, SJ Chung
arXiv preprint arXiv:2307.08602, 2023
12023
Contraction Theory for Robust Learning-Based Control: Toward Aerospace and Robotic Autonomy
H Tsukamoto
California Institute of Technology, 2023
12023
Information-Optimal Multi-Spacecraft Positioning for Interstellar Object Exploration
A Bhardwaj, S Bhatta, H Tsukamoto
arXiv preprint arXiv:2411.09110, 2024
2024
Neural-Rendezvous: Provably Robust Guidance and Control to Encounter Interstellar Objects
H Tsukamoto, SJ Chung, YK Nakka, B Donitz, D Mages, M Ingham
Journal of Guidance, Control, and Dynamics, 1-18, 2024
2024
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20