Seguir
Kerstin Hammernik
Kerstin Hammernik
Dirección de correo verificada de nvidia.com
Título
Citado por
Citado por
Año
Learning a variational network for reconstruction of accelerated MRI data
K Hammernik, T Klatzer, E Kobler, MP Recht, DK Sodickson, T Pock, ...
Magnetic resonance in medicine 79 (6), 3055-3071, 2018
18722018
Deep-Learning Methods for Parallel Magnetic Resonance Imaging Reconstruction: A Survey of the Current Approaches, Trends, and Issues
F Knoll, K Hammernik, C Zhang, S Moeller, T Pock, DK Sodickson, ...
IEEE Signal Processing Magazine 37 (1), 128-140, 2020
3552020
Assessment of the generalization of learned image reconstruction and the potential for transfer learning
F Knoll, K Hammernik, E Kobler, T Pock, MP Recht, DK Sodickson
Magnetic resonance in medicine 81 (1), 116-128, 2019
2532019
CINENet: deep learning-based 3D cardiac CINE MRI reconstruction with multi-coil complex-valued 4D spatio-temporal convolutions
T Küstner, N Fuin, K Hammernik, A Bustin, H Qi, R Hajhosseiny, PG Masci, ...
Scientific reports 10 (1), 13710, 2020
2102020
Variational networks: connecting variational methods and deep learning
E Kobler, T Klatzer, K Hammernik, T Pock
Pattern Recognition: 39th German Conference, GCPR 2017, Basel, Switzerland …, 2017
1502017
A multi-center milestone study of clinical vertebral CT segmentation
J Yao, JE Burns, D Forsberg, A Seitel, A Rasoulian, P Abolmaesumi, ...
Computerized Medical Imaging and Graphics 49, 16-28, 2016
1432016
A deep learning architecture for limited-angle computed tomography reconstruction
K Hammernik, T Würfl, T Pock, A Maier
Bildverarbeitung für die Medizin 2017: Algorithmen-Systeme-Anwendungen …, 2017
1052017
Learning Joint Demosaicing and Denoising Based on Sequential Energy Minimization
T Klatzer, K Hammernik, P Knobelreiter, T Pock
Computational Photography (ICCP), 2016 IEEE International Conference on, 1-11, 2016
1002016
Systematic evaluation of iterative deep neural networks for fast parallel MRI reconstruction with sensitivity‐weighted coil combination
K Hammernik, J Schlemper, C Qin, J Duan, RM Summers, D Rueckert
Magnetic Resonance in Medicine 86 (4), 1859-1872, 2021
952021
Learning Diffeomorphic and Modality-invariant Registration using B-splines
H Qiu, C Qin, A Schuh, K Hammernik, D Rueckert
Medical Imaging with Deep Learning, 2021
712021
Physics-Driven Deep Learning for Computational Magnetic Resonance Imaging: Combining physics and machine learning for improved medical imaging
K Hammernik, T Küstner, B Yaman, Z Huang, D Rueckert, F Knoll, ...
IEEE Signal Processing Magazine 40 (1), 98-114, 2023
67*2023
Inverse GANs for accelerated MRI reconstruction
D Narnhofer, K Hammernik, F Knoll, T Pock
Wavelets and Sparsity XVIII 11138, 381-392, 2019
542019
Vertebrae Segmentation in 3D CT Images Based on a Variational Framework
K Hammernik, T Ebner, D Stern, M Urschler, T Pock
Recent Advances in Computational Methods and Clinical Applications for Spine …, 2015
512015
Spray Drying of Aqueous Salbutamol Sulfate Solutions Using the Nano Spray Dryer B-90—The Impact of Process Parameters on Particle Size
EM Littringer, S Zellnitz, K Hammernik, V Adamer, H Friedl, NA Urbanetz
Drying Technology 31 (12), 1346-1353, 2013
492013
Cardiac MR: from theory to practice
TF Ismail, W Strugnell, C Coletti, M Božić-Iven, S Weingaertner, ...
Frontiers in cardiovascular medicine 9, 826283, 2022
482022
Bayesian uncertainty estimation of learned variational MRI reconstruction
D Narnhofer, A Effland, E Kobler, K Hammernik, F Knoll, T Pock
IEEE Transactions on Medical Imaging 41 (2), 279-291, 2021
482021
Complementary time‐frequency domain networks for dynamic parallel MR image reconstruction
C Qin, J Duan, K Hammernik, J Schlemper, T Küstner, R Botnar, C Prieto, ...
Magnetic Resonance in Medicine 86 (6), 3274-3291, 2021
412021
Cooperative training and latent space data augmentation for robust medical image segmentation
C Chen, K Hammernik, C Ouyang, C Qin, W Bai, D Rueckert
Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th …, 2021
402021
Machine learning for image reconstruction
K Hammernik, F Knoll
Handbook of Medical Image Computing and Computer Assisted Intervention, 25-64, 2020
392020
Learning a Variational Model for Compressed Sensing MRI Reconstruction
K Hammernik, F Knoll, D Sodickson, T Pock
Proceedings of the International Society of Magnetic Resonance in Medicine …, 2016
392016
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20