Seguir
Santiago Segarra
Santiago Segarra
Associate Professor, Electrical and Computer Engineering, Rice University
Dirección de correo verificada de rice.edu - Página principal
Título
Citado por
Citado por
Año
Connecting the dots: Identifying network structure via graph signal processing
G Mateos, S Segarra, AG Marques, A Ribeiro
IEEE Signal Processing Magazine 36 (3), 16-43, 2019
3582019
Network topology inference from spectral templates
S Segarra, AG Marques, G Mateos, A Ribeiro
IEEE Transactions on Signal and Information Processing over Networks 3 (3 …, 2017
3192017
Sampling of graph signals with successive local aggregations
AG Marques, S Segarra, G Leus, A Ribeiro
IEEE Transactions on Signal Processing 64 (7), 1832-1843, 2015
3042015
Optimal graph-filter design and applications to distributed linear network operators
S Segarra, AG Marques, A Ribeiro
IEEE Transactions on Signal Processing 65 (15), 4117-4131, 2017
2662017
Stationary graph processes and spectral estimation
AG Marques, S Segarra, G Leus, A Ribeiro
IEEE Transactions on Signal Processing 65 (22), 5911-5926, 2017
2422017
Signal processing on higher-order networks: Livin’on the edge... and beyond
MT Schaub, Y Zhu, JB Seby, TM Roddenberry, S Segarra
Signal Processing 187, 108149, 2021
1392021
Unfolding WMMSE using graph neural networks for efficient power allocation
A Chowdhury, G Verma, C Rao, A Swami, S Segarra
IEEE Transactions on Wireless Communications 20 (9), 6004-6017, 2021
1362021
Stability and continuity of centrality measures in weighted graphs
S Segarra, A Ribeiro
IEEE Transactions on Signal Processing 64 (3), 543-555, 2015
1302015
Reconstruction of graph signals through percolation from seeding nodes
S Segarra, AG Marques, G Leus, A Ribeiro
IEEE Transactions on Signal Processing 64 (16), 4363-4378, 2016
1092016
Authorship attribution through function word adjacency networks
S Segarra, M Eisen, A Ribeiro
IEEE Transactions on Signal Processing 63 (20), 5464-5478, 2015
992015
Centrality measures for graphons: Accounting for uncertainty in networks
M Avella-Medina, F Parise, M Schaub, S Segarra
IEEE Transactions on Network Science and Engineering, 2018
982018
Principled simplicial neural networks for trajectory prediction
TM Roddenberry, N Glaze, S Segarra
International Conference on Machine Learning, 9020-9029, 2021
97*2021
Graph-based semi-supervised & active learning for edge flows
J Jia, MT Schaub, S Segarra, AR Benson
Proceedings of the 25th ACM SIGKDD international conference on knowledge …, 2019
892019
Blind identification of graph filters
S Segarra, G Mateos, AG Marques, A Ribeiro
IEEE Transactions on Signal Processing 65 (5), 1146-1159, 2016
852016
Flow smoothing and denoising: Graph signal processing in the edge-space
MT Schaub, S Segarra
2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP …, 2018
832018
Distributed scheduling using graph neural networks
Z Zhao, G Verma, C Rao, A Swami, S Segarra
ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and …, 2021
662021
Attributing the authorship of the Henry VI plays by word adjacency
S Segarra, M Eisen, G Egan, A Ribeiro
Shakespeare Quarterly 67 (2), 232-256, 2016
622016
Axiomatic construction of hierarchical clustering in asymmetric networks
G Carlsson, F Mémoli, A Ribeiro, S Segarra
2013 IEEE International Conference on Acoustics, Speech and Signal …, 2013
602013
Network topology inference from non-stationary graph signals
R Shafipour, S Segarra, AG Marques, G Mateos
2017 IEEE International Conference on Acoustics, Speech and Signal …, 2017
582017
HodgeNet: Graph neural networks for edge data
TM Roddenberry, S Segarra
2019 53rd Asilomar Conference on Signals, Systems, and Computers, 220-224, 2019
542019
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20