Seguir
Jonathan Rebane
Jonathan Rebane
PhD in Data Science, Stockholm University
Dirección de correo verificada de dsv.su.se
Título
Citado por
Citado por
Año
Seq2Seq RNNs and ARIMA models for Cryptocurrency Prediction: A Comparative Study
J Rebane, I Karlsson, S Denic, P Papapetrou
KDD Data Science in Fintech Workshop, 2018
922018
A classification framework for exploiting sparse multi-variate temporal features with application to adverse drug event detection in medical records
F Bagattini, I Karlsson, J Rebane, P Papapetrou
BMC medical informatics and decision making 19, 1-20, 2019
422019
Explainable time series tweaking via irreversible and reversible temporal transformations
I Karlsson, J Rebane, P Papapetrou, A Gionis
2018 IEEE International Conference on Data Mining (ICDM), 207-216, 2018
412018
Locally and globally explainable time series tweaking
I Karlsson, J Rebane, P Papapetrou, A Gionis
Knowledge and Information Systems 62 (5), 1671-1700, 2020
282020
Separate Ca2+ sources are buffered by distinct Ca2+ handling systems in Aplysia neuroendocrine cells
CJ Groten, JT Rebane, G Blohm, NS Magoski
Journal of Neuroscience 33 (15), 6476-6491, 2013
232013
Exploiting complex medical data with interpretable deep learning for adverse drug event prediction
J Rebane, I Samsten, P Papapetrou
Artificial Intelligence in Medicine 109, 101942, 2020
212020
Achieving a data-driven risk assessment methodology for ethical AI
A Felländer, J Rebane, S Larsson, M Wiggberg, F Heintz
Digital Society 1 (2), 13, 2022
172022
An investigation of interpretable deep learning for adverse drug event prediction
J Rebane, I Karlsson, P Papapetrou
2019 IEEE 32nd International Symposium on Computer-Based Medical Systems …, 2019
142019
Humans construct survey estimates on the fly from a compartmentalised representation of the navigated environment
T Meilinger, A Henson, J Rebane, HH Bülthoff, HA Mallot
Spatial Cognition XI: 11th International Conference, Spatial Cognition 2018 …, 2018
102018
Assessing the clinical validity of attention-based and SHAP temporal explanations for adverse drug event predictions
J Rebane, I Samsten, P Pantelidis, P Papapetrou
2021 IEEE 34th International Symposium on Computer-Based Medical Systems …, 2021
92021
SMILE: a feature-based temporal abstraction framework for event-interval sequence classification
J Rebane, I Karlsson, L Bornemann, P Papapetrou
Data mining and knowledge discovery 35 (1), 372-399, 2021
92021
Ca2+ removal by the plasma membrane Ca2+-ATPase influences the contribution of mitochondria to activity-dependent Ca2+ dynamics in Aplysia neuroendocrine cells
CJ Groten, JT Rebane, HM Hodgson, AK Chauhan, G Blohm, NS Magoski
Journal of Neurophysiology 115 (5), 2615-2634, 2016
82016
Mining disproportional frequent arrangements of event intervals for investigating adverse drug events
Z Lee, J Rebane, P Papapetrou
2020 IEEE 33rd International Symposium on Computer-Based Medical Systems …, 2020
42020
Learning from administrative health registries
J Rebane, I Karlsson, L Asker, H Boström, P Papapetrou
ECML-PKDD 1960, 2017
32017
The acquisition of survey knowledge through navigation
T Meilinger, J Rebane, A Henson, HH Buelthoff, HA Mallot
Pabst Science, 2015
12015
Learning from Complex Medical Data Sources
J Rebane
Department of Computer and Systems Sciences, Stockholm University, 2022
2022
Constraints on models of human survey estimation: evidence from a learning study
T Meilinger, J Rebane, A Henson, HH Bülthoff, HA Mallot
International Workshop on Models and Representations in Spatial Cognition, 2016
2016
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–17