Seguir
Thomas M. Moerland
Thomas M. Moerland
Leiden Institute of Advanced Computer Science, Leiden University
Dirección de correo verificada de liacs.leidenuniv.nl - Página principal
Título
Citado por
Citado por
Año
Model-based reinforcement learning: A survey
TM Moerland, J Broekens, A Plaat, CM Jonker
Foundations and Trends® in Machine Learning, 2023
8802023
Emotion in Reinforcement Learning Agents and Robots: A Survey
TM Moerland, J Broekens, CM Jonker
Machine Learning, https://doi.org/10.1007/s10994-017-5666, 2017
2022017
A0C: Alpha Zero in Continuous Action Space
TM Moerland, J Broekens, A Plaat, CM Jonker
Planning and Learning Workshop at the 35th International Conference on …, 2018
692018
Efficient exploration with Double Uncertain Value Networks
TM Moerland, J Broekens, CM Jonker
Deep Reinforcement Learning Symposium at the 30th Conference on Advances in …, 2017
592017
A unifying framework for reinforcement learning and planning
TM Moerland, J Broekens, A Plaat, CM Jonker
Frontiers in Artificial Intelligence 5, 908353, 2022
49*2022
Learning Multimodal Transition Dynamics for Model-Based Reinforcement Learning
TM Moerland, J Broekens, CM Jonker
Scaling Up Reinforcement Learning (SURL) workshop @ European Conference on …, 2017
422017
RRT-CoLearn: towards kinodynamic planning without numerical trajectory optimization
WJ Wolfslag, M Bharatheesha, TM Moerland, M Wisse
IEEE Conference on Robotics and Automation (ICRA), 2018
392018
Fear and Hope Emerge from Anticipation in Model-Based Reinforcement Learning.
TM Moerland, J Broekens, CM Jonker
Proceedings of the 25th International Joint Conference on Artificial …, 2016
282016
Monte Carlo Tree Search for Asymmetric Trees
TM Moerland, J Broekens, A Plaat, CM Jonker
Planning and Learning Workshop at the 35th International Conference on …, 2018
22*2018
Think Too Fast Nor Too Slow: The Computational Trade-off Between Planning And Reinforcement Learning
TM Moerland, A Deichler, S Baldi, J Broekens, CM Jonker
Bridging the Gap Between AI Planning and Reinforcement Learning (PRL …, 2020
14*2020
The Potential of the Return Distribution for Exploration in RL
TM Moerland, J Broekens, CM Jonker
Exploration in Reinforcement Learning Workshop at the 35th International …, 2018
142018
Visualizing MuZero Models
JA de Vries, KS Voskuil, TM Moerland, A Plaat
Workshop on Unsupervised Reinforcement Learning, ICML, 2021
122021
Tutored learning: an effective way for students to benefit research by critical appraisal
VT Janmaat, KE Kortekaas, TM Moerland, MWC Vereijken, JW Schoones, ...
Medical Science Educator 23, 269-277, 2013
122013
Are LSTMs good few-shot learners?
M Huisman, TM Moerland, A Plaat, JN van Rijn
Machine Learning 112 (11), 4635-4662, 2023
92023
Continuous Markov decision process and policy search
T Moerland
Lecture notes for the course reinforcement learning, Leiden University 28 …, 2021
42021
Continuous episodic control
Z Yang, TM Moerland, M Preuss, A Plaat
2023 IEEE Conference on Games (CoG), 1-8, 2023
32023
The Intersection of Planning and Learning
TM Moerland
PhD thesis, Delft University of Technology, 2021
32021
Two-Memory Reinforcement Learning
Z Yang, TM Moerland, M Preuss, A Plaat
2023 IEEE Conference on Games (CoG), 1-9, 2023
22023
First go, then post-explore: the benefits of post-exploration in intrinsic motivation
Z Yang, TM Moerland, M Preuss, A Plaat
arXiv preprint arXiv:2212.03251, 2022
22022
Knowing What You Don’t Know - Novelty Detection for Action Recognition in Personal Robots
T Moerland, A Chandarr, M Rudinac, P Jonker
Proceedings of the 11th Joint Conference on Computer Vision, Imaging and …, 2016
22016
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20