Andrew Markham
Andrew Markham
Department of Computer Science, University of Oxford
Dirección de correo verificada de cs.ox.ac.uk - Página principal
Título
Citado por
Citado por
Año
A realistic evaluation and comparison of indoor location technologies: experiences and lessons learned
D Lymberopoulos
IPSN 2015, 2015
3242015
Evolution and sustainability of a wildlife monitoring sensor network
V Dyo, SA Ellwood, DW Macdonald, A Markham, C Mascolo, B Pásztor, ...
Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems …, 2010
2002010
Vinet: Visual-inertial odometry as a sequence-to-sequence learning problem
R Clark, S Wang, H Wen, A Markham, N Trigoni
Thirty-First AAAI Conference on Artificial Intelligence, 2017
1452017
Lightweight map matching for indoor localisation using conditional random fields
Z Xiao, H Wen, A Markham, N Trigoni
IPSN-14 Proceedings of the 13th International Symposium on Information …, 2014
1362014
Does BTLE measure up against WiFi? A comparison of indoor location performance
X Zhao, Z Xiao, A Markham, N Trigoni, Y Ren
European Wireless 2014; 20th European Wireless Conference, 1-6, 2014
1342014
Vidloc: A deep spatio-temporal model for 6-dof video-clip relocalization
R Clark, S Wang, A Markham, N Trigoni, H Wen
Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2017
1312017
Non-line-of-sight identification and mitigation using received signal strength
Z Xiao, H Wen, A Markham, N Trigoni, P Blunsom, J Frolik
IEEE Transactions on Wireless Communications 14 (3), 1689-1702, 2014
1252014
3d object reconstruction from a single depth view with adversarial learning
B Yang, H Wen, S Wang, R Clark, A Markham, N Trigoni
Proceedings of the IEEE International Conference on Computer Vision …, 2017
932017
Visual SLAM and structure from motion in dynamic environments: A survey
MRU Saputra, A Markham, N Trigoni
ACM Computing Surveys (CSUR) 51 (2), 1-36, 2018
822018
WILDSENSING: Design and deployment of a sustainable sensor network for wildlife monitoring
V Dyo, SA Ellwood, DW Macdonald, A Markham, N Trigoni, R Wohlers, ...
ACM Transactions on Sensor Networks (TOSN) 8 (4), 1-33, 2012
812012
Magneto-inductive networked rescue system (miners) taking sensor networks underground
A Markham, N Trigoni
Proceedings of the 11th international conference on Information Processing …, 2012
692012
Underground localization in 3-D using magneto-inductive tracking
A Markham, N Trigoni, DW Macdonald, SA Ellwood
IEEE Sensors Journal 12 (6), 1809-1816, 2011
642011
Towards monocular vision based obstacle avoidance through deep reinforcement learning
L Xie, S Wang, A Markham, N Trigoni
arXiv preprint arXiv:1706.09829, 2017
622017
Revealing the hidden lives of underground animals using magneto-inductive tracking
A Markham, N Trigoni, SA Ellwood, DW Macdonald
Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems …, 2010
622010
Robust pedestrian dead reckoning (R-PDR) for arbitrary mobile device placement
Z Xiao, H Wen, A Markham, N Trigoni
2014 International Conference on Indoor Positioning and Indoor Navigation …, 2014
582014
Ionet: Learning to cure the curse of drift in inertial odometry
C Chen, X Lu, A Markham, N Trigoni
Thirty-Second AAAI Conference on Artificial Intelligence, 2018
452018
Distortion rejecting magneto-inductive three-dimensional localization (MagLoc)
TE Abrudan, Z Xiao, A Markham, N Trigoni
IEEE Journal on Selected Areas in Communications 33 (11), 2404-2417, 2015
402015
Fusion of radio and camera sensor data for accurate indoor positioning
S Papaioannou, H Wen, A Markham, N Trigoni
2014 IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems …, 2014
382014
Climate and the individual: inter-annual variation in the autumnal activity of the European badger (Meles meles)
MJ Noonan, A Markham, C Newman, N Trigoni, CD Buesching, ...
PLoS One 9 (1), e83156, 2014
362014
Indoor tracking using undirected graphical models
Z Xiao, H Wen, A Markham, N Trigoni
IEEE Transactions on Mobile Computing 14 (11), 2286-2301, 2015
352015
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20