Effective medium crack classification on laboratory concrete specimens via competitive machine learning JA Guzmán-Torres, MZ Naser, FJ Domínguez-Mota Structures 37, 858-870, 2022 | 29 | 2022 |
A multi-layer approach to classify the risk of corrosion in concrete specimens that contain different additives JA Guzmán-Torres, FJ Domínguez-Mota, EM Alonso-Guzmán Case Studies in Construction Materials 15, e00719, 2021 | 21 | 2021 |
Estimation of the main conditions in (SARS-CoV-2) Covid-19 patients that increase the risk of death using Machine learning, the case of Mexico JA Guzmán-Torres, EM Alonso-Guzmán, FJ Domínguez-Mota, ... Results in Physics 27, 104483, 2021 | 14 | 2021 |
Damage Detection on Steel-Reinforced Concrete Produced by Corrosion via YOLOv3; A detailed guide JA Guzmán-Torres, FJ Domínguez-Mota, W Martínez-Molina, MZ Naser, ... Frontiers in Built Environment 9, 41, 2023 | 13 | 2023 |
Estimating the flexural strength of concrete using compressive strength as input value in a deep learning model JA Guzmán-Torres, FJ Domínguez-Mota, EM Alonso-Guzmán IOP conference series: Materials science and engineering 1150 (1), 012019, 2021 | 11 | 2021 |
Effect of the addition of agribusiness and industrial wastes as a partial substitution of portland cement for the carbonation of mortars W Martinez-Molina, HL Chavez-Garcia, T Perez-Lopez, ... Materials 14 (23), 7276, 2021 | 10 | 2021 |
Data science and machine learning technique for predicting electrical resistivity in recycled concrete with nopal as addition JA Guzmán-Torres, A Zalapa-Damian, FJ Domínguez-Mota, ... Advanced Engineering Forum 40, 43-62, 2021 | 9 | 2021 |
Deep learning techniques for multi-class classification of asphalt damage based on hamburg-wheel tracking test results JA Guzmán-Torres, LA Morales-Rosales, I Algredo-Badillo, ... Case Studies in Construction Materials 19, e02378, 2023 | 7 | 2023 |
Predicting the compressive strength based in ndt using deep learning JA Guzmán-Torres, FJ Domínguez-Mota, G Tinoco-Guerrero, ... Special Publication 350, 90-102, 2021 | 7 | 2021 |
A review of concrete performance employing a starch as addition using several regression techniques JA Guzmán-Torres, FJ Domínguez-Mota, EMA Guzmán, WM Molina, ... Advanced Materials Research 1160, 1-14, 2021 | 6 | 2021 |
El comportamiento del pulso ultrasónico en un concreto de alto desempeño adicionado con un polímero orgánico comparado con un concreto sin adiciones JAG Torres, EMA Guzmán, FJD Mota, WM Molina, JG Tinoco, MAN Seras Congreso CONPAT 2019, Tuxtla Gutiérrez, Chiapas, 2019 | 6 | 2019 |
Solicitaciones mecánicas y estáticas a concreto hidráulico simple elaborado con agregados pétreos redondeados y adicionados con fibras deshidratadas de cactus opuntia PT No | 6 | 2015 |
A meshless finite difference scheme applied to the numerical solution of wave equation in highly irregular space regions G Tinoco-Guerrero, H Arias-Rojas, JA Guzmán-Torres, ... Computers & Mathematics with Applications 136, 25-33, 2023 | 5 | 2023 |
Non-destructive Tests for Estimating the Tensile Strength in Concrete with Deep Learning JA Guzmán-Torres, CA Júnez-Ferreyra, R Silva-Orozco, ... RILEM Annual Week 40, 856-866, 2023 | 5 | 2023 |
Prediction of the tensile strength and electrical resistivity of concrete with organic polymer and their influence on carbonation using data science and a machine learning … JAG Torres, FJD Mota, EM Alonso-Guzmán, W Martínez-Molina, JGT Ruiz, ... Key Eng. Mater 862, 72-77, 2020 | 5 | 2020 |
Effective medium crack classification on laboratory concrete specimens via competitive machine learning, Structures 37 (2022) 858–870 JA Guzmán-Torres, MZ Naser, FJ Domínguez-Mota | 5 | |
Modeling Tensile Strength of Concrete Using Support Vector Regression. JA Guzmán-Torres, FJ Domínguez-Mota, EM Alonso-Guzmán, ... ACI Materials Journal 119 (3), 2022 | 4 | 2022 |
Prediction of the tensile strength and electrical resistivity of concrete with organic polymer and their influence on carbonation using data science and a machine learning … JA Guzmán-Torres, FJ Domínguez Mota, EMA Guzmán, WM Molina, ... Key Engineering Materials 862, 72-77, 2020 | 4 | 2020 |
Extreme fine-tuning and explainable AI model for non-destructive prediction of concrete compressive strength, the case of ConcreteXAI dataset JA Guzmán-Torres, FJ Domínguez-Mota, G Tinoco-Guerrero, ... Advances in Engineering Software 192, 103630, 2024 | 3 | 2024 |
ConcreteXAI: A multivariate dataset for concrete strength prediction via deep-learning-based methods JA Guzmán-Torres, FJ Domínguez-Mota, EM Alonso-Guzmán, ... Data in Brief 53, 110218, 2024 | 3 | 2024 |