Partitioning a graph into a cycle and an anticycle, a proof of Lehel's conjecture S Bessy, S Thomassé Journal of Combinatorial Theory, Series B 100 (2), 176-180, 2010 | 89 | 2010 |
Burning a graph is hard S Bessy, A Bonato, J Janssen, D Rautenbach, E Roshanbin Discrete Applied Mathematics 232, 73-87, 2017 | 83 | 2017 |
Kernels for feedback arc set in tournaments S Bessy, FV Fomin, S Gaspers, C Paul, A Perez, S Saurabh, S Thomassé Journal of Computer and System Sciences 77 (6), 1071-1078, 2011 | 75 | 2011 |
Bounds on the burning number S Bessy, A Bonato, J Janssen, D Rautenbach, E Roshanbin Discrete Applied Mathematics 235, 16-22, 2018 | 67 | 2018 |
Disjoint 3‐cycles in tournaments: A proof of the Bermond–Thomassen conjecture for tournaments J Bang‐Jensen, S Bessy, S Thomassé Journal of Graph Theory 75 (3), 284-302, 2014 | 33 | 2014 |
Polynomial kernels for proper interval completion and related problems S Bessy, A Perez Information and Computation 231, 89-108, 2013 | 30 | 2013 |
Two proofs of the Bermond–Thomassen conjecture for tournaments with bounded minimum in-degree S Bessy, N Lichiardopol, JS Sereni Discrete Mathematics 310 (3), 557-560, 2010 | 28 | 2010 |
Relating broadcast independence and independence S Bessy, D Rautenbach Discrete Mathematics 342 (12), 111589, 2019 | 24 | 2019 |
Polynomial kernels for 3-leaf power graph modification problems S Bessy, C Paul, A Perez Discrete Applied Mathematics 158 (16), 1732-1744, 2010 | 24 | 2010 |
Spanning a strong digraph by α circuits: A proof of Gallai’s conjecture S Bessy, S Thomassé Combinatorica 27, 659-667, 2007 | 24 | 2007 |
Girth, minimum degree, independence, and broadcast independence S Bessy, D Rautenbach arXiv preprint arXiv:1809.09565, 2018 | 21 | 2018 |
Parameterized complexity of a coupled-task scheduling problem S Bessy, R Giroudeau Journal of Scheduling 22 (3), 305-313, 2019 | 16 | 2019 |
Dynamic monopolies for interval graphs with bounded thresholds S Bessy, S Ehard, LD Penso, D Rautenbach Discrete Applied Mathematics 260, 256-261, 2019 | 16 | 2019 |
Every strong digraph has a spanning strong subgraph with at most n+ 2α− 2 arcs S Bessy, S Thomassé Journal of Combinatorial Theory, Series B 87 (2), 289-299, 2003 | 16 | 2003 |
The geodetic hull number is hard for chordal graphs S Bessy, MC Dourado, LD Penso, D Rautenbach SIAM Journal on Discrete Mathematics 32 (1), 543-547, 2018 | 15 | 2018 |
Arc‐chromatic number of digraphs in which every vertex has bounded outdegree or bounded indegree S Bessy, F Havet, E Birmelé Journal of Graph Theory 53 (4), 315-332, 2006 | 15 | 2006 |
Packing arc-disjoint cycles in tournaments S Bessy, M Bougeret, R Krithika, A Sahu, S Saurabh, J Thiebaut, ... Algorithmica 83, 1393-1420, 2021 | 14 | 2021 |
Out‐colourings of digraphs N Alon, J Bang‐Jensen, S Bessy Journal of Graph Theory 93 (1), 88-112, 2020 | 13 | 2020 |
Three min-max theorems concerning cyclic orders of strong digraphs S Bessy, S Thomassé International Conference on Integer Programming and Combinatorial …, 2004 | 13 | 2004 |
Triangle packing in (sparse) tournaments: approximation and kernelization S Bessy, M Bougeret, J Thiebaut arXiv preprint arXiv:1707.04220, 2017 | 12 | 2017 |